
Supersymmetric distributions, Hilbert spaces of supersymmetric functions and quantum fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9903

(http://iopscience.iop.org/0305-4470/39/31/018)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/31
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9903–9919 doi:10.1088/0305-4470/39/31/018

Supersymmetric distributions, Hilbert spaces of
supersymmetric functions and quantum fields

Florin Constantinescu

Fachbereich Mathematik, Johann Wolfgang Goethe-Universität Frankfurt,
Robert-Mayer-Strasse 10, D 60054 Frankfurt am Main, Germany

Received 1 February 2006, in final form 16 June 2006
Published 19 July 2006
Online at stacks.iop.org/JPhysA/39/9903

Abstract
The recently investigated Hilbert–Krein and other positivity structures of the
superspace are considered in the framework of superdistributions. These tools
are applied to problems raised by rigorous supersymmetric quantum field
theory.

PACS numbers: 11.30.Pb, 12.60.Jv

1. Introduction

In spite of their formidable success in many areas of physics, path integral methods are in most
cases formal. In the case of supersymmetry, even methods of moderate rigour like canonical
quantization are not generally worked out. Certainly supersymmetric quantum fields have
to be operators but the (positive definite) Hilbert space, in which they are supposed to act,
and the associated domain problems are outside formal methods. Whereas it is easy to see
that the Hamiltonian in supersymmetry is positive [1, 2], the argument does not give further
information on the nature and realization of the Hilbert space behind.

In [3] we have proved that the N = 1 superspace shows an intrinsic Hilbert–Krein
structure realized on supersymmetric functions (not fields). Taking up this finding, in this note,
we answer general questions on supersymmetric distributions and Hilbert spaces together with
their first applications to what was called axiomatic quantum field theory [4]. They have to
get definite answers before pursuing further developments.

In this paper we concentrate on the ‘massive’ case in quantum field theory. The ‘massless’
case requires a little more effort but does not require new tools. The main point of the massless
case is a natural restriction of the space of supersymmetric functions to a subspace of it [3].
This restriction is necessary in order to maintain the intrinsic Hilbert–Krein structure and
on the other hand reminds rigorous methods of the canonical quantization of gauge theories
(Gupta–Bleuler, Nielsen–Lautrup, Kugo–Ojima etc, see [3]).

Before starting work we discuss in some details the content of the present paper
pointing out its necessity and usefulness and making reference to alternative constructions.
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Supersymmetry is a large field of activity in physics mostly related to quantum field and string
theory. With few exceptions related to representation theory of super-algebras and groups and
its consequences, supersymmetry is investigated by path integral methods. In supersymmetry
these powerful methods include integration over the non-commutative (Grassmann) variables
being even more formal than the same methods in the non-supersymmetric case. On the
other hand in the non-supersymmetric case there are alternative methods which preceded path
integrals and in the modern approach can be looked at as complementary to path integral
methods. Canonical quantization, the LSZ-formalism and the axiomatic approach are, among
others, well-known examples. Such methods are convenient and even necessary if we want to
pass to the S-matrix of the theory under study. In particular proving unitarity of the S-matrix
is a top achievement in quantum field theory which, at least from a rigorous point of view,
which seems to be outside formal path integrals methods. Unitarity requires a Hilbert space
framework induced by a (physical) positive definite scalar product. In the non-supersymmetric
case it is a general belief supported by C∗-methods in quantum field theory that the Hilbert
space can be realized on functions of spacetime (wavefunctions). The most natural question to
ask is if this holds in the supersymmetric case too, i.e. to what extent there are positive definite
(invariant) scalar products on supersymmetric functions where in the definition of the scalar
product the integration is performed not only on spacetime but also on Grassmann variables
(Berezin integration). The reader can easily experience that this requirement is not easy to
achieve. It was proved recently [3] that at least in the case N = 1 the superspace comes
equipped with a natural (invariant) indefinite Krein structure which generates as usual (see for
instance [5]) a positive definite Hilbert space structure.

In the present paper we propose ourself to exploit the Hilbert–Krein structure of the
N = 1 supersymmetry starting a study of supersymmetric quantum field theory outside path
integral methods. There are two types of problems which we address in this paper. The first
type is concerned with consistency problems related to the definition of quantum fields as
operator-valued superdistributions. In particular in section 3 difficulties with tensor products
of superdistributions and nuclearity are shown to be absent. Furthermore it is shown that
C∗-methods are applicable to supersymmetry, an interesting point being the Hermiticity of
the scalar product generated by the Gelfand–Neumark construction in section 4. The second
type of problems studied in this paper concerns information on supersymmetric Hilbert space
operators especially those which appear in quantum field theory. In particular in section 8
we study the simplest example of a free field whereas in section 9 the general form of
the interacting supersymmetric n-point functions is worked out. For n = 2 it gives the
supersymmetric Källen–Lehmann representation. Some of the aspects of quantum superfields
appear in section 10.

Concluding we may say that there are two points which single out the results of the present
paper: they are new results on free and interacting supersymmetric quantum fields obtained
outside path integral methods and they are rigorous.

2. Test functions and distributions for supersymmetry

Our supersymmetric (test) functions and distributions and the Hilbert spaces related to them
are not as general as usually used in the mathematical literature on supersymmetry and
supermanifolds [6–8]. In our work we are guided by direct applications to the supersymmetric
quantum field theory [1]. Let x be in the four-dimensional Minkowski space with the signature
(−1, 1, 1, 1) and let θ, θ̄ be two-component Grassmann variables associated with x. We use
the notations and conventions in [1]. They coincide with those of [9] up to the Pauli σ 0 which
in [1] and this paper is equal to the 2 × 2-matrix minus one (it is one in [9]). It means that
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in this paper σ̄ is defined to be σ̄ = (σ 0,−σ 1,−σ 2,−σ 3) = (−1,−σ 1,−σ 2,−σ 3) where
σ = (σ l), l = 0, 1, 2, 3 are the Pauli matrices. The most general function of z = (x, θ, θ̄ ) is
of the form

X(z) = X(x, θ, θ̄ )

= f (x) + θϕ(x) + θ̄ χ̄ (x) + θ2m(x) + θ̄2n(x)

+ θσ l θ̄vl(x) + θ2θ̄ λ̄(x) + θ̄2θψ(x) + θ2θ̄2 d(x) (2.1)

where the coefficients of θ, θ̄ are functions of x. For the vector component v we can write
equivalently

θσ l θ̄vl = θαθ̄ α̇vαα̇

where

vαα̇ = σ l
αα̇vl, v

l = − 1
2 σ̄ lα̇αvαα̇.

In principle x (or more precisely each of its four components) is a number but at a certain
stage of the computations related to supersymmetry we will be forced to admit that x is not
only a number (base) but also contains an even element of the Grassmann algebra. In this case
we perform the Taylor expansion retaining for x only the base. Functions of several variables
z1, z2, . . . have also expansions in θ1, θ̄1, θ2, θ̄2, . . . of the same type. In what follows we use
a mixed van der Waerden calculus in which θ, θ̄ are Grassmann variables commuting with the
component of the ‘spinor’ coefficients of X. The rules of this calculus are [3]:

ψχ = ψαχα = −ψαχα = −χαψα = −χψ (2.2)

ψ̄χ̄ = ψ̄ α̇χ̄ α̇ = −ψ̄ α̇χ̄α̇ = −χ̄α̇ψ̄ α̇ = −χ̄ ψ̄ (2.3)

χψ = χαψα = χ̄ α̇ψ̄ α̇ = ψ̄ α̇χ̄ α̇ = ψ̄χ̄ = −χ̄ ψ̄ = −ψχ (2.4)

together with

(θφ)(θψ) = 1
2 (φψ)θ2 (2.5)

(θ̄ φ̄)(θ̄ ψ̄) = 1
2 (φ̄ψ̄)θ̄2 (2.6)

χσnψ̄ = ψ̄σ̄ nχ (2.7)

χσnψ̄ = −χ̄ σ̄ nψ = −ψσnχ̄ (2.8)

χ̄ σ̄ nψ = −χσnψ̄ = −ψ̄σ̄ nχ. (2.9)

They differ from the usual ones in which the Grassmann variables together with the components
of the spinor fields are all anticommuting [1, 9]. In this latter case, following the terminology
in physics, X is said to be a field (but not yet the operator quantum field to be defined later).
As a consequence we make difference between (supersymmetric) functions (or distributions),
fields and quantum fields to be defined later. Note that some combined relations as for instance

χσnψ̄ = −χ̄ σ̄ nψ

remain unchanged with respect to the mixed or usual van der Waerden calculus. Taking θ̄ to
be the (Grassmann) conjugate of θ, θ̄α̇ = θα , with θ1αθ2β . . . θnγ = θ̄nγ̇ . . . θ̄2β̇ θ̄1α̇ , we have for
functions

X̄ = X̄(x, θ, θ̄ ) = f̄ (x) − θχ(x) − θ̄ ϕ̄(x) + θ2n̄(x) + θ̄2m̄(x)

+ θσ l θ̄ v̄l(x) − θ2θ̄ ψ̄(x) − θ̄2θλ(x) + θ2θ̄2 d̄(x) (2.10)
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where the bar represents either the complex, the Grassmann or both complex and Grassmann
conjugations (the one or another meaning of the bar will be clear from the context). This
relation is different from the usual one in which Grassmann variables anticommute with
spinor components (i.e. the case of fields) which is

X̄ = X̄(x, θ, θ̄ )

= f̄ (x) + θχ(x) + θ̄ ϕ̄(x) + θ2n̄(x) + θ̄2m̄(x)

+ θσ l θ̄ v̄l(x) + θ2θ̄ ψ̄(x) + θ̄2θλ(x) + θ2θ̄2 d̄(x) (2.11)

by minus signs of the odd terms. The relation X = X holds in both cases.
Now we pass to superdistributions. The cheapest way, which we adopt in the present

paper, is to define them again by (2.1) where the coefficients of θ, θ̄ are now distributions
instead of functions. The definition of functions and distributions can be extended to several
variables. The standard order of the Grassmann variables is supposed to be θ1, θ̄1; θ2, θ̄2; . . . .

For convenience we denote by S(R4n × G) the set of functions in n variables z1, z2, . . . , zn

with coefficients in S(R4n) where G stays for Grassmann. Some problems appear at the point
when we want to pass to the duality functional i.e. if we want to look at superdistributions
as linear continuous functionals on spaces of supersymmetric test functions (supersymmetric
duality). Certainly the duality functional has to extend integration including Grassmann
variables (Berezin integration). In one variable this means

(X , X) = X (X) =
∫

d8zX (z)X(z) (2.12)

where X is the test function and X would be distribution. The notations and conventions
regarding the Berezin integration are as in [9]. Note that we have fixed the order in which X
and X appear in integral (2.12). One way to cope with duality would be to introduce a locally
convex topology on the space of test functions. This can be done by using seminorms (norms)
suggested in [6, 8]. Another way is the following. The superfunction X can be identified
with the vector-valued function X with components (f, ϕ, χ̄ ,m, n, v, λ̄, ψ, d). We assume the
coefficient functions to be indefinitely differentiable and may give to the linear space of vector-
valued functions X the locally convex topology common for the Schwartz spaces D (or S).

By usual vector-valued duality we construct vector-valued distributions (linear continuous
functionals) which will be denoted again by X . The last construction has nothing to do with
Grassmann integrals but X constructed by the above-mentioned supersymmetric duality and
X constructed with the help of the vector-valued duality are certainly related. The relation is

XV (Xinv) = XG(X) (2.13)

where the index V stays for vector valued, G for the result of the Grassmann integration in
the duality functional (2.12) and the subscript ‘inv’ indicates an involution of the coefficients
of X. It exchanges f with d, then ϕ, χ with λ,ψ and finally keeps v unchanged. It is a direct
consequence of the Grassmann integration in the rhs of (2.13) which selects coefficients of the
highest power θ2θ̄2. We do not further insist on this relation because as we will see it is only
of limited help for us.

Concluding there are at least three possibilities to look at superdistributions. We argued
that these possibilities are in principle related. Our discussion is sufficient in order to point
out some difficulties which appear in the general framework of superdistributions. These
difficulties are related to complex (and Grassmann) conjugation and to tensor products.
Defining complex conjugation of usual distributions and related it to a Hilbert space structure
(as this is necessary for instance in the discussion of the Gelfand triple) poses no problems. In
contrast, complex conjugation of superdistributions supplemented by the Grassmann one in the
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duality interpretation may pose problems because Grassmann conjugation reverses the order
of the Grassmann variables. We will avoid such problems from the beginning considering
only superdistributions which are even polynomials in the Grassmann variables.

3. Nuclearity in supersymmetric quantum field theory

Our interest is devoted now to the second difficulty, i.e. to the definition of the supersymmetric
tensor products. Consider the product X1(X1)X2(X2) where X1, X2 are superfunctions in
different variables and X1,X2 superdistributions of type (2.1). Then for X = X1X2 we
generally have

X (X1X2) �= X1(X1)X2(X2). (3.1)

This happens because X1 generally does not commute with X2 (remember that our ‘spinorial’
coefficients being functions or distributions commute with Grassmann variables). In this case
some problems with the distribution theoretic tensor products may appear. Such problems
are not present if for instance X2 is an even polynomial in the Grassmann variables. In this
case X (X1X2) = X1(X1)X2(X2) as it should be. Topological aspects of tensor products
can be inferred from the vector-valued interpretation or by introducing from the beginning
as mentioned above seminorms (norms) directly on functions of type (2.1) with indefinitely
differentiable coefficients. Nuclearity (i.e. the kernel theorem well known in distribution
theory) seems to be assured in the vector-valued interpretation but it is not what we need. Let
us discuss this property in the physical framework of supersymmetric quantum field theory.
Nuclearity is needed in quantum field theory mainly by introducing the n-point functions as
distributions in their joint variables. Indeed if V is the quantum field operator considered as
operator-valued distribution [4], � the vacuum and X1, X2 . . . , Xn test functions in S(R4),
then (�, V (X1)V (X2) · · · V (Xn)�) is linear and separately continuous in X1, X2 . . . , Xn.
By nuclearity it defines the distribution Wn(x1, x2, . . . , xn) ∈ S ′(R4n) in 4n-variables
x1, x2, . . . , xn such that we have (�, V (X1)V (X2) · · · V (Xn)�) = Wn(X1, X2, . . . , Xn)

where the relation between Wn(x1, x2, . . . , xn) ∈ S ′(R4n) and Wn(X1, X2, . . . , Xn) is the
standard one. In the supersymmetric quantum field theory some problems of similar nature
as in the previous section may appear because of non-commutativity of V (zi) and Xj(zj ). In
order to avoid them we may assume at a certain stage that (�, V (X1)V (X2) · · · V (Xn)�) can
be written as multilinear form Wn(X1, X2, . . . , Xn) separately continuous in the superfunctions
X1, X2 . . . , Xn. This is the case if the n-point functions are even in the Grassmann variables.
Then by nuclearity Wn = Wn(z1, z2, . . . , zn) ∈ S ′(R4n × G). Certainly we can avoid
discussing nuclearity at all by assuming that the n point functions Wn = Wn(z1, z2, . . . , zn) ∈
S ′(R4n × G) with

(�, V (X1)V (X2) · · · V (Xn)�) = Wn(X1, X2, . . . , Xn) (3.2)

exist as superdistributions. This assumption is very natural because it reflects and captures
formal computations in physics. For example computing the two-point function of the free
Wess–Zumino model (directly or by means of functional integrals) we use fields with non-
commuting spinor coefficients. This is equivalent in this particular case with one form or
another of the above-mentioned assumption. Moreover the two-point functions turn out to
be even in Grassmann variables. The n-point functions of the free field are products of
(even) two-point functions and pose no problems either. The interacting case is discussed in
section 9.

At this point, as a further technical remark, it is worthwhile anticipating some points of
our study remembering first that elementary nuclearity is related to the idea of the Gelfand
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rigged space (Gelfand triple). The most well-known Gelfand triple is S ⊂ L2 ⊂ S
′

where
S

′
is the space of tempered distributions over the test function space S of rapidly decreasing

functions. In supersymmetry we generally do not have this situation because (as we will
see) the SUSY L2 space off-shell does not exist. On the other hand we will show that the
supersymmetric (invariant) L2 space does exist on-shell being segregated by a Krein structure
of the off-shell superspace. A key point will be the fact that general distribution theoretic tools
off-shell, as discussed above, will be compatible with the Hilbert space (including Gelfand
triple) considerations on-shell.

We conclude that possible difficulties with superdistributions related to complex
conjugation and especially to tensor products and nuclearity do not show up in supersymmetric
quantum field theory. This encourages us to look for further structures in the following sections.

4. Supersymmetric *-algebra

For the time being we stay off-shell and introduce the counterpart of a topological *-algebra
used in the reconstruction theorem [4]. This is a locally convex *-algebra constructed with
the help of supersymmetric functions. Suppose that the coefficients of the supersymmetric
functions X(z1, z2, . . . , zn) belong to the Schwartz space S(R4n). Let B(S) be the set of
sequences (Xn), n = 0, 1, 2, . . . such that X0 is a complex number and Xn = 0 for all but
finitely many n’s. In the vector space B(S) we define the operations of multiplication and the
*-operation:

(XY )n(z1, z2, . . . , zn) =
n∑

j=0

Xj(z1, . . . , zj )Y
n−j (zj+1, . . . , zn) (4.1)

(X∗)n(z1, . . . , zn) = Xn(zn, . . . , z1) (4.2)

where bar means at the same time complex and Grassmann conjugation. We prove that * is
an involution. This operation makes B(S) into an algebra with involution and identity. It is
not a Banach algebra but it can be turned as usual into a locally convex algebra. Positivity and
positive definite functionals (states) on this algebra will play a central role. We come back
to the involution properties. It is clear that * is conjugate antilinear. It remains to prove that
it reverses the order of products (XY )∗ = Y ∗X∗ and that (X∗)∗ = X. This follows from the
relation

Xk(z1, . . . , zk)Y l(w1, . . . , wl) = Y l(w1, . . . , wl) Xk(z1, . . . , zk) (4.3)

for k, l = 0, 1, 2, . . . . This algebra will be the framework of the reconstruction theorem
which provides us with supersymmetric operator-valued fields. Note that for usual functions
i.e. functions which do not depend on Grassmann variables we have besides (4.3) also
XkY l = X̄kȲ l , a relation which is generally invalid if Grassmann variables are present
and the bar includes Grassmann conjugation. But this relation is not used in the Gelfand–
Neumark-like construction of the reconstruction theorem which we will perform in this paper.
The crucial Hermiticity of the scalar product to be constructed rests only on the relation
(XY )∗ = Y ∗X∗ which holds in both usual and supersymmetric framework. This shows that
supersymmetry is compatible with a quantum field theory C∗-approach and makes use of the
*-algebra structure in an even more intricate way. Indeed the involution * in supersymmetry
includes Grassmann conjugation besides the complex one.

The reconstruction theorem itself in the supersymmetric framework does not seem to
raise any special problems as this was already noted in [11]. But at this stage the reader
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may feel uneasy: the positivity needed in the reconstruction theorem can be easily formulated
using the *-algebra above but it is not clear to what extent such a property (i.e. positivity)
can be realized in a framework in which Grassmann variables and Berezin integration play
a central role. Experience with Berezin integration shows that it is not easy to find sound
positive definite sesquilinear forms satisfying Hermiticity (scalar products) given directly on
functions depending on Grassmann variables, i.e. analogues to L2 scalar products, although
such examples exist [10]. This matter is the subject of the subsequent sections. In [11] a
detour over the group (Hopf) algebra was proposed which we do not follow here.

5. Hilbert spaces of supersymmetric functions

In this section we present off-shell pre-Hilbert spaces and on-shell Hilbert spaces of functions
in supersymmetry which are related to the L2 and Sobolev spaces of analysis. It means that we
look for positive sesquilinear forms by integrating superfunctions in all variables including the
Grassmann ones. Let X, Y be supersymmetric functions of type (2.1) with regular coefficients.
The key sesquilinear form is

(X, Y ) =
∫

d8z1 d8z2X̄(z1)K(z1, z2)Y (z2)

=
∫

d8z1 d8z2X̄(z1)[(Pc + Pa − PT )K0(z1 − z2)]Y (z2)

=
∫

d8z1 d8z2X̄(z1)(Pc + Pa − PT )K0(z1 − z2)Y (z2) (5.1)

where Pi, i = c, a, T are the chiral, antichiral and transversal projections, respectively [1, 9]
acting on the z1-variable (see equations to follow) and

K0(z) = δ2(θ)δ2(θ̄)D+(x)

D+(x) =
∫

eipx dρ(p)
(5.2)

=
∫

e−ipx dρ(−p) (5.3)

where

δ2(θ) = θ2, δ2(θ̄) = θ̄2.

We have used the standard notations

Dα = ∂α + iσ l
αα̇ θ̄ α̇∂l (5.4)

Dα = εαβDβ = −∂α + iσ lα
α̇ θ̄ α̇∂l (5.5)

D̄α̇ = −∂̄α̇ − iθασ l
αα̇∂l (5.6)

D̄α̇ = εα̇β̇ D̄β̇ = ∂̄ α̇ − iθασ lα̇
α ∂l (5.7)

for the covariant (and invariant) derivatives and

D2 = DαDα = −(∂α∂α − 2i∂αα̇ θ̄ α̇∂α + θ̄2�) (5.8)

D̄2 = D̄α̇D̄α̇ = −(∂̄α̇ ∂̄ α̇ + 2iθα∂αα̇∂̄ α̇ + θ2�) (5.9)

c = D̄2D2, a = D2D̄2, T = DαD̄2Dα = D̄α̇D2D̄α̇ = −8� +
1

2
(c + a) (5.10)
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Pc = 1

16�c, Pa = 1

16�a, PT = − 1

8�T . (5.11)

The positive measure dρ(p) is concentrated in the interior of the forward light cone (dρ(−p) is
concentrated in the interior of the backward light cone). It can be proved by direct computation
[3] (see also remark (viii)) later in this section and section 7 of this paper) that (5.1) is positive
definite. It is not strictly positive definite because it may have plenty of zero vectors. The
well-known example is dρ(p) = θ(p0)δ(p

2 + m2), dρ(−p) = θ(−p0)δ(p
2 + m2) where m

is the mass (the ‘massive’ case). In the massive case the zero vectors are harmless because
they can be easily eliminated by the on-shell condition; the ‘massless’ case m = 0 requires a
certain amount of extra work [3] but it is not too different from the massive one. We can also
write

(X, Y ) =
∫

d8z1 d8z2[(Pc + Pa − PT )K0(z1 − z2)]X̄(z1)Y (z2)

=
∫

d8z1 d8z2(Pc + Pa − PT )K0(z1 − z2)X̄(z1)Y (z2) (5.12)

because (Pc + Pa − PT )K0 is even in the Grassman variables.
Beside being positive (for X = Y ) the form (·, ·) satisfies the usual (Hermiticity) property

(X, Y ) = (Y,X) (5.13)

where the bar on the rhs means complex conjugation. Moreover we have

(Y,X) = (Ȳ , X̄) (5.14)

where the bars on the rhs in (5.14) mean complex conjugation supplemented by Grassmann
conjugation. The proofs including the positivity (i.e. the non-negativity of (., .)) are by
computation.

Some remarks are in order:

(i) X, Y are functions (not fields). Their spinorial components are assumed to commute
between themselves and with the Grassmann variables. Consequently we apply the
mixed van de Waerden calculus which was worked out in [3] instead of the usual one.

(ii) There is a surprising minus sign in front of PT in (5.1). Reversing it produces an invariant,
indefinite (not only semidefinite) sesquilinear form

〈X, Y 〉 =
∫

d8z1 d8z2X̄(z1)K0(z1 − z2)Y (z2) (5.15)

because Pc + Pa + PT = 1. This is the indication of an intrinsic Krein structure of the
N = 1 superspace. The associated Hilbert space will be introduced below.

(iii) The operators Pc, Pa, PT in (5.1) can be moved to act on the z2-variable.
(iv) The integral kernel in (5.15) depends only on z1 − z2 whereas the full integral kernel in

(5.1) does not share this property.
(v) Our positive sesquilinear form (5.1) is different from other proposals in supersymmetry

(see [7] as well as [12] and the references given there) known to the author which seem
to have the peculiar property of generating complex-valued norms.

(vi) It is interesting to remark that the results of the relevant computation (like for instance the
proof of positivity of (5.1) and Hermiticity (5.13)) is the same for X, Y being functions
or fields. Whereas the results for functions are rigorous, those for fields, although
computationally correct, must be looked at as formal.

(vii) The operation of complex and Grassmann conjugation taken together is a conjugation
operator in the Hilbert space.
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(viii) An equivalent expression for the scalar product (., .) is

(X, Y ) =
∫

d8z1 d8z2[(Pc + Pa − PT )X̄(z1)]Y (z2)

=
∫

d4x1 d4x2D
+(x1 − x2)

×
∫

d2θ d2θ̄ X̄(x1, θ, θ̄ )[(Pc + Pa − PT )Y ](x2, θ, θ̄ )

=
∫

d4x1 d4x2D
+(x1 − x2)(Ic + Ia − IT ) (5.16)

where the notations are self-explanatory. This form is convenient for computation, in
particular for those needed in section 7.

(ix) Not only the supersymmetric invariant kernel induced by Pc + Pa − PT produces a
positive result but also separately Pc, Pa and −PT . Moreover positivity is also induced
by Pc + Pa + P+ + P− where P+ = D2

4� 1
2
, P− = D̄2

4� 1
2

. The last property is connected to

the positivity of the two-point function for the free Wess–Zumino model [3] in which the
transversal sector is neglected.

Finally we factorize the zero-vectors of the positive sesquilinear form (5.1) and by
completion obtain our Hilbert space. This factorization is for the case dρ(p) = θ(p0)δ(p

2 +
m2) dp,m > 0 harmless being equivalent to the on-shell restriction p2 + m2 = 0. This is
not the case for m = 0 [3]. Altogether we generated an inherent Hilbert–Krein structure
on N = 1 supersymmetric functions which we call the standard Hilbert–Krein structure of
the superspace in order to distinguish it from other ones. The simple point of the whole
business (which intuitively supports this paper) seems to be the minus sign in front of the
transversal projection! The inherited bona fide Hilbert space is the analogue of the (on-shell)
invariant L2-space. It is not a non-Hilbert generalization of a Hilbert space sometimes used
in supersymmetries in which vectors can have complex lengths [12]. It is likely that it can be
used in applications as for instance the Wigner-type representation theory on supersymmetric
functions, supersymmetric canonical quantization (for first steps see [13]) and renormalization
including gauge theories.

6. Supersymmetric Hilbert space operators and their adjoints

Now we come to supersymmetric operators and especially to their adjoints. Usual examples
of formal supersymmetric operators are multiplication and especially differential (covariant
and invariant) operators of the form

Dβ, D̄β̇ ,D2, D̄2, c = D̄2D2, a = D2D̄2, T = DβD̄2Dβ = D̄β̇D2D̄β̇

etc. as well as analogue operators (supersymmetric generators) Qβ, Q̄β̇ etc. Before starting
let us compute

DβX = ϕβ + θα(2mεβα) + θ̄α̇

(−vα̇
β − iσ lα̇

β ∂lf
)

+ θ̄2
(
ψβ − i

2
σ l

ββ̇
∂lχ̄

β̇
)

+ θαθ̄ α̇
(
2εαβλ̄α̇ − iσ l

βα̇∂lϕα

)
+ θ2θ̄α̇

(−iσ lα̇
β ∂lm

)
+ θ̄2θα

(
2εβαd +

i

2
σ

lβ̇

β ∂lvαβ̇

)
− i

2
θ2θ̄2σ l

ββ̇
∂l λ̄

β̇ (6.1)

and a similar expression for D̄β̇X.
Note first that Dβ, D̄β̇ are true operators applied to functions X but no definite

mathematical objects when applied to fields because for instance 2mεαβ are no anticommuting
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spinor components (for fixed β). A similar remark applies to the Q-operators. This does not
affect us because we work in the frame of test functions in which the ‘fermionic’ components
commute. We come to supersymmetric adjoint operators. Generally the Hilbert space adjoint
A+ of an operator A is (here and further on in this paper we disregard domain problems because
as usual in elementary quantum field theory they turn out to be harmless) defined through

(X,AY) = (A+X, Y ). (6.2)

This will be our definition too. It uses the supersymmetric true scalar product (., .). As in
[14], using the real bilinear form associated with (5.1), the transpose and the conjugate of an
operator can be introduced but we do not need them.

We pass now to the most common examples. In order to study them we need some partial
integration results [9]. We have∫

d8z X̄DβY = ∓
∫

d8z(DβX̄)Y (6.3)

∫
d8z X̄D̄β̇Y = ∓

∫
d8z(D̄β̇X̄)Y (6.4)

accordingly as X̄ (or X) is an even or odd Grassmann function. On the other hand we have
from our previous considerations for functions

DβX = ∓D̄β̇X̄ (6.5)

accordingly as X̄ (or X) is even or odd. Consequently∫
d8z X̄DβY =

∫
d8z(D̄β̇X)Y (6.6)

∫
d8z X̄D̄β̇Y =

∫
d8z(DβX)Y (6.7)

for arbitrary X, Y . Relations similar to (6.3)–(6.7) hold for the operators Qβ, Q̄β̇ to be defined
later in this section. Now we insert the kernels in the integrals. Indicating by superscripts the
variables on which the operators act we have

D2(1)(Pc + Pa − PT )(1)K0(z1 − z2) = D2(2)(Pc + Pa − PT )(1)K0(z1 − z2) (6.8)

D̄2(1)(Pc + Pa − PT )(1)K0(z1 − z2) = D̄2(2)(Pc + Pa − PT )(1)K0(z1 − z2). (6.9)

Using (6.3)–(6.9) we get

(X,D2Y ) = (D̄2X, Y ) (6.10)

(X, D̄2Y ) = (D2X, Y ) (6.11)

i.e. D̄2 is the operator adjoint of D2 and vice versa:

(D2)+ = D̄2, (D̄2)+ = D2. (6.12)

On the same lines we obtain as bona fide Hilbert space operators

c+ = c, a+ = a, T + = T (6.13)

P +
c = Pc, P +

a = Pa, P +
T = PT (6.14)
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as well as adjoint relations for the supersymmetric operator generators Q+
β = Q̄β̇ , (Q̄β̇)+ = Qβ

etc. The operators Qα, Q̄α̇ are given by

Qα = ∂α + iσ l
αα̇ θ̄ α̇∂l (6.15)

Q̄α̇ = −∂̄α̇ − iθασ l
αα̇∂l . (6.16)

Explicitly we have

QβX = ϕβ + θα(2mεβα) + θ̄α̇

(−vα̇
β + iσ lα̇

β ∂lf
)

+ θ̄2
(
ψβ +

i

2
σ l

ββ̇
∂lχ̄

β̇
)

+ θαθ̄ α̇
(
2εαβλ̄α̇ + iσ l

βα̇∂lϕα

)
+ θ2θ̄α̇

(
iσ lα̇

β ∂lm
)

+ θ̄2θα
(

2εβαd − i

2
σ

lβ̇

β ∂lvαβ̇

)
+

i

2
θ2θ̄2σ l

ββ̇
∂l λ̄

β̇ (6.17)

and a similar relation for Q̄β̇ .
Introducing the θ, θ̄ -expansion for X we get the action of Q, Q̄ on components which is

well known in elementary supersymmetry.
In order to prove the operator adjoint relations Q+

β = Q̄β̇ , (Q̄β̇)+ = Qβ we use the
commutativity of Q and D operators and

Q
(1)
β (Pc + Pa − PT )(1)K0(z1 − z2) = −Q

(2)
β (Pc + Pa − PT )(1)K0(z1 − z2) (6.18)

Q̄
(1)

β̇
(Pc + Pa − PT )(1)K0(z1 − z2) = −Q̄

(2)

β̇
(Pc + Pa − PT )(1)K0(z1 − z2). (6.19)

Relations of type (6.18), (6.19) do not hold for the Dβ, D̄β̇ operators . This is the reason we
cannot simply relate the Dβ to the D̄β̇ operators in our Hilbert space understanding. The same
remark applies for multiplication and differentiation operators with respect to the Grassmann
variables when considered separately. There is no undesirable consequence of this fact.

If P is the momentum operator then P, ξQ + ξ̄ Q̄, aP + ξQ + ξ̄ Q̄ are self-adjoint
operators. Consequently the operator exp i(aP + ξQ + ξ̄ Q̄ is an unitary operator (U+ =
U−1, (UX,UY) = (X, Y )). Here we use the fact that Q commutes with P and D, D̄. If
τ = τ(a, ξ, ξ̄ ) is the supersymmetric transformation in superspace then we can implement it
unitarily on supersymmetric functions by the usual formula

U(τ)X(z) = X(τ(z)). (6.20)

This is the rigorous version of a well-known formal statement ([15], p.91; see also [16]). If a
Lorentz spin is present this formula changes as in [15]. Generally it is possible to construct
the (irreducible) unitary representations of supersymmetry on functions (not on fields in
which case the unitarity is formal [15, 16]) as this originally appears in the Wigner–Mackey
theory for the Poincaré group. Measure-theoretic considerations in the Mackey theory of
induced representations should be replaced by analogue considerations in the framework of
von Neumann algebras.

Before ending this section let us point out that the supersymmetric framework can provide
sometimes surprising results. Indeed being unitary the operator exp i(ξQ + ξ̄ Q̄) studied above
is bounded. But expanding it in powers of ξ, ξ̄ it produces a sum of a finite number of powers
of Q, Q̄ which at the first glance seems to be unbounded. But there is no contradiction because
the boundedness is a consequence of the supersymmetric framework. This was already noted
in [11].
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7. Hilbert space realization on (multiplet) components

The supersymmetric fields appear in physics as multiplets of ordinary quantum fields, bosons
and fermions. Whereas supersymmetry imposes some conditions on the ordinary fields in
the multiplet (for instance the same number of bosons as fermions), the idea (at least in the
perturbative framework) is to start with free multiplets on which an interaction (in the form
of an interaction Lagrangian) is superimposed. The treatment makes use of supersymmetric
technique or equivalently, if such a technique does not exist or is insufficiently developed,
the work goes directly on component fields. At the first sight the Hilbert space of the free
theory appears as a tensor product of the multiplet components. But this picture is too simple
in order to be true. Indeed supersymmetry induces relations between multiplet components
and a simple tensor product picture has to be abandoned. On the other hand being in the free
case we expect nevertheless a Fock-type (tensor algebra) structure. How does it look like?
This is the question which we do answer in this section in an even more general setting. We
start with the standard Hilbert space of the N = 1 supersymmetry introduced in section 5 and
decompose it on components. This is a matter of computation and we will give here only the
results and some hints. The easiest way is to use (5.16) where we compute

Ic + Ia − IT = 1

2
ϕ̄1iσ̄ l∂lϕ2 +

1

2
χ1iσ l∂lχ̄2 +

2

�λ1iσ l∂lλ̄2 +
2

�ψ1iσ̄ l∂lψ2

+
�
4

f̄ 1f2 + m̄1m2 + n̄1n2 +
4

� d̄1d2 − v̄l
1∂l∂kv

k
2 +

�
2

v̄1lv
2l (7.1)

where f1(x1) = f1, f2(x2) = f2, ϕ1(x1) = ϕ1, ϕ2(x2) = ϕ2 etc. In order to see explicitly
the positivity of the scalar product (5.12) we will take at a latter stage X = Y which means
f1 = f2, ϕ1 = ϕ2 etc. The contributions involving f, d,m, n in (7.1) are obviously positive
(i.e. non-negative). The same holds for the v-contribution after partial integration. We have
only to look at the ϕ, χ, λ and ψ-contributions. Let

J1 =
∫

d4x1 d4x2D
+(x1 − x2)ϕ̄1(iσ̄

l∂l)ϕ2 (7.2)

J2 =
∫

d4x1 d4x2D
+(x1 − x2)χ1(iσ

l∂l)χ̄2. (7.3)

In order to study J1, J2 we go to the Fourier transform defined as

f̃ (p) = 1

(2π)2

∫
e−ipxf (x) d4x

obtaining

J1 =
∫

d4p ˜̄ϕ1(p)D̃+(p)iσ̄ ˜∂lϕ2(−p)

=
∫

d4pϕ̃1(−p)ρ(−p)iσ̄ l(ipl)ϕ̃2(−p)

=
∫

d4pϕ̃1(p)ρ(p)(σ̄ lpl)ϕ̃2(p) (7.4)

where a Fourier normalization factor was omitted and we have used ˜̄f (−p) = ¯̃f (p) and∫
d4x1 d4x2D

+(x1 − x2)F (x1)G(x2) = ∫
d4pF̃ (p)D̃+(p)G̃(−p) where F,G are arbitrary

functions. But σ̄ lpl is positive in the forward light cone where dρ(p) is concentrated such
that (for ϕ1 = ϕ2)J1 is positive. In the same way J2 is positive for χ1 = χ2 because σ lpl is
positive in the forward light cone too. Similar arguments hold for the term in λ,ψ in (7.1).
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We conclude that (5.16) is for X = Y positive (non-negative). The Hermiticity relations
(5.13), (5.14) follow easily from the computation above keeping different X, Y and taking
into account that σ, σ̄ are self-adjoint.

Adopting appropriate normalizations we obtain the direct sum

H = ⊕Hcomponents (7.5)

where H is the Hilbert space of the N = 1 superspace and Hcomponents is the Hilbert spaces
of the components (of bosonic and fermionic nature). The fermionic components (Weyl
or Majorana) do not involve the mass term of their corresponding two-point function. The
formula (7.5) simplifies for chiral, antichiral and transversal sectors. This seems to be an
interesting result because it says that the standard supersymmetric Hilbert space is (because
of supersymmetric invariance) a direct sum over the components. For a specific model like
the vector field or the free Wess–Zumino model the elements in H are the ‘one-particle’ states
and the Fock space is constructed as usual having the structure of a tensor algebra. This is
similar to the case encountered in electrodynamics where the wavefunction of the (physical)
transverse photon is the sum of two non-negative contributions but the Fock space continues to
have the structure of a tensor algebra. Acting in H the supersymmetric operators, as expected,
mix up the components. An example are the generators Q, Q̄. Working out their action in
(7.5) we re-obtain the usual supersymmetric transformations on multiplet components.

8. The simplest example: free supersymmetric quantum field

The first model of a supersymmetric quantum field theory in four dimensions was the chiral–
antichiral Wess–Zumino model with a third power interaction. Without the interaction the
Wess–Zumino (free) field is still a chiral–antichiral one. We prefer instead of the Wess–Zumino
model the free massive vector field V (z) which we define here by the simplest supersymmetric
invariant two-point function which at the same time is positive definite. The corresponding
kernel in the sense of (5.1) is induced by Pc + Pa −PT (the generalization ζcPc + ζaPa − ζT PT

with ζi � 0 is also possible). We start by defining representations of supersymmetries on
supersymmetric functions by

U(τ)X(z) = X(τ(z)) (8.1)

where τ = τ(z) is a supersymmetric transformation. Considered in the Krein space, i.e. in
the space with inner product 〈., .〉 (see (5.15)), as this is usually suggested in the literature
on the subject [15, 16], this representation is not unitary. We obtain a unitary representation
when representing in the corresponding Hilbert space H with scalar product (., .) (see (5.1)).
The supersymmetric quantum field V (z) is similar to the scalar neutral field in the common
quantum field theory. Its definition requires a (supersymmetric) symmetric Fock space.
Indeed we construct the symmetric Fock space on H which we denote by F = Fock(H)

(antisymmetric Fock spaces are reserved for ghosts). A general element of F will be denoted
by � = (�(0), �(1), . . . , �(n), . . .),�(0) = 1,�(n) = �(n)(z1, z2, . . . , zn). Note that working
with the overall anticommuting convention discussed above, Fock spaces in supersymmetry in
the scalar case (complying with the right statistics) are always symmetric. The above unitary
representation can be extended as usually to the Fock space F . We set for the vector field V

smeared with the (test) supersymmetric function X(z):

V (X) = V +(X) + V −(X) (8.2)

with

(V +(X)�)(n)(w1, . . . , wn) =
√

n + 1(X(w),�(n+1)(w,w1, . . . , wn)) (8.3)
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(V −(X)�)(n)(w1, . . . , wn) = 1√
n

n∑
j=1

X(wj)�
(n−1)(w1, . . . , ŵj . . . , wn) (8.4)

where w = (p, θ, θ̄ ) and p is the momentum. The adjoint of V is given by V +(X) = V (X̄),
i.e. we have a real (neutral) supersymmetric field. We can project on components using the
representation (7.5) of the Hilbert space H but we are not interested in this question. The
n-point functions can be given as usual as products of two-point functions. They are non-
vanishing only for even n and are even functions of the Grassmann variables in the combination
θ θ̄ . This follows from the relation (see for instance [13])

(Pc + Pa − PT )δ2(θ1 − θ2)δ
2(θ̄1 − θ̄2) = (1 − 2PT )δ2(θ1 − θ2)δ

2(θ̄1 − θ̄2)

= 4

� (1 − iθ1σ
lθ̄2∂l − iθ̄1σ̄

lθ2∂l)

+ θ2
1 θ̄2

2 + θ̄2
1 θ2

2 + 2(θ1σ
lθ̄1)

(
θ2σlθ̄2 +

2

�∂l∂
mθ̄2σ̄mθ2

)

− iθ2
1 θ̄1σ̄

lθ2θ̄
2
2 ∂l − iθ̄2

1 θ1σ
lθ̄2θ

2
2 ∂l +

1

4
�θ2

1 θ̄2
1 θ2

2 θ̄2
2 . (8.5)

This last property which in fact, because of supersymmetric invariance, holds in any
supersymmetric quantum field theory (see the next section) makes obsolete the problems
connected to nuclearity which have been discussed in section 3.

9. Implications of supersymmetric invariance to the n-point functions

In this section we give the general form of a supersymmetric invariant n-point function
generalizing a result in [13]. Suppose we have a unitary representation U(τ) of the full
supersymmetric group in a Hilbert space of supersymmetric functions

U(τ)X(z) = X(τ(z)). (9.1)

A quantum supersymmetric field (free or interacting) and its vacuum are supposed to be
supersymmetric invariant such that this property is shared by the vacuum expectation values
too. Denoting by Wn(z1, z2, . . . , zn) the n-point function (considered as superdistribution) we
have simultaneous relations

QiWn(z1, z2, . . . , zn) = 0, Q̄iWn(z1, z2, . . . , zn) = 0 (9.2)

for i = 1, 2, . . . , n where Qi, Q̄i are the supersymmetric generators on the variables zi .
Because of translation invariance Wn depend on xi, i = 1, 2, . . . , n through differences
xi − xi+1. How does the dependence of Wn on θi, θ̄i look like? We start with the case
n = 2. Simultaneous supersymmetric invariance implies for W2(z1, z2)

(Q1 + Q2)W2(z1, z2) = 0 (9.3)

(Q̄1 + Q̄2)W2(z1, z2) = 0 (9.4)

where Q1,Q2 and Q̄1, Q̄2 act on the variable z1 and z2, respectively.
In order to solve these equations we introduce new variables θ = 1

2 (θ1 + θ2) and
ζ = θ1 − θ2 together with their conjugates as well as (by translation invariance) the difference
variable x = x1 −x2 (for a similar argument see [17]). Note that by introducing the difference
variable x = x1 − x2 the derivative ∂l in Q2, Q̄2 taken with respect to the second variable
changes sign such that in the new variables equations (9.2) for n = 2 take the form
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∂

∂θα
− iσ l

αα̇ ζ̄ α̇∂l

)
W2 = 0 (9.5)

(
∂

∂θ̄ α̇
− iζ ασ l

αα̇∂l

)
W2 = 0 (9.6)

where W2 is a function of x = x1 − x2, θ, θ̄ , ζ, ζ̄ . We want to solve this system of partial
differential equations in mixed commutative and non-commutative variables. A first (trivial
and from the physical point of view uninteresting) solution for W2 is a constant. Other solutions
can be obtained in a two-step procedure by using in the first step equation (9.5) to factorize
from W2 the exponential exp(iθσ l ζ̄ ∂l) (for more details see also [13]). We write

W2 = exp(iθσ l ζ̄ ∂l)D.

The first equation (9.5) implies ∂
∂θα D = 0, α = 1, 2 which means that D is independent of

θα, α = 1, 2. In the second step we write

D = exp(−iζσ l θ̄∂l)E

use (9.6), and conclude as above that E is independent not only of θ but also independent of θ̄ .
These two exponentials cover the dependence of W2 from the variables θ and θ̄ . The residual
dependence in E is in ζ, ζ̄ and x = x1 −x2. Altogether the general solution of equations (9.5),
(9.6) in the x, θ, θ̄ , ζ, ζ̄ -variables is (with the exception of the constant solution) of the form

W2(x, θ, θ̄ , ζ, ζ̄ ) = exp[−i(ζσ l θ̄ − θσ l ζ̄ )∂l]E(x, ζ, ζ̄ ) (9.7)

where from invariance considerations E is restricted to

E(x, ζ, ζ̄ ) = E1(x) + ζ 2E2(x) + ζ̄ 2E3(x) + ζσ l ζ̄ ∂lE4(x) + ζ 2ζ̄ 2E5(x) (9.8)

with Ei(x) = Ei(x1 − x2), i = 1, . . . , 5 being Lorentz invariant functions (or distributions).
The reality condition would require real Ei, i = 1, . . . , 5 as well as E2 = E3. Translating
back to the θ, θ̄ -variables it is possible to relate (9.7) to the known invariants constructed with
the help of the five invariant operators Pi, i = c, a, T , +,− [1].

In the next section we will use this result in order to discuss a supersymmetric Källen–
Lehmann representation for a scalar neutral supersymmetric quantum field theory. We continue
this section by extended our result from n = 2 to general n. This is easily done by introducing
the new variables

θ = 1

n
(θ1 + · · · + θn), ζi = θi − θi+1, i = 1, 2, . . . , n − 1 (9.9)

θ̄ = 1

n
(θ̄1 + · · · + θ̄n), ζ̄i = θ̄i − θ̄i+1, i = 1, 2, . . . , n − 1 (9.10)

such that equations (9.5), (9.6) transform to(
∂

∂θα
− i

n−1∑
i=1

σ
li
αα̇ ζ̄ α̇

i ∂li

)
Wn = 0 (9.11)

(
∂

∂θ̄ α̇
− i

n−1∑
i=1

ζ α
i σ

li
αα̇∂li

)
Wn = 0. (9.12)

These equations can be solved in a two-step procedure exactly as in the previous case. The only
difference is that in the exponentials in (9.11), (9.12) we have to consider the corresponding
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sums over ζi, ζ̄i , i = 1, . . . , n − 1. The result is

Wn(z1, z2, . . . , zn) = exp

[
−i

n−1∑
i=1

(ζiσ
li θ̄ − θσ li ζ̄i )∂li

]

×E(x1 − x2, . . . , xn−1 − xn, ζ1, ζ̄1, . . . , ζn−1, ζ̄n−1). (9.13)

The function E turns out as above, from invariance considerations, to be a finite sum of products
of θiθj , θ̄i θ̄j , θiσ

l∂l θ̄j multiplied (applied) to Lorentz invariant functions (distributions)
depending on difference variables xi − xj . The reality condition imposes further obvious
restrictions.

10. Some other aspects of quantum superfields

We come to the point of putting together the ingredients and experience developed in the
preceding sections in order to indicate some other aspects of supersymmetric quantum fields
which are accessible to our rigorous methods. This can be done following ideas in the axiomatic
quantum field theory [4]. Quantum fields are defined as operator-valued superdistributions.
The supersymmetric invariance is formulated with the help of an unitary representation of
the super-Poincaré group on the postulated Hilbert space of supersymmetric functions. Other
axioms [4], including positivity and locality (or weak locality), make no problems. As in
the usual case the reconstruction theorem based on the *-algebra of section 4 enables us to
realize the supersymmetric quantum fields as operator-valued distributions on supersymmetric
test function spaces starting from the n-point functions. Before continuing on this line let us
remark that our generalization is not trivial. It does not seem to confirm the impression that in
order to mathematically extend a theory to the supersymmetric case we only have to adjust the
prefix ‘super’ on the right places. Indeed, even the simple examples of the supersymmetric
free field in section 8 as well as the related generalized free field later on in this section show
that, among others, our construction is centred on a non-trivial bona fide Hilbert space of
supersymmetric functions and more important, that this Hilbert space is intimately connected
with an inherent Hilbert–Krein structure of the superspace [3].

We continue to restrict the consideration to the real massive vector field, which using
another terminology, could be called the supersymmetric scalar neutral field. As a first
application we can mention the supersymmetric Källen–Lehmann representation. Indeed the
results of section 9 show that the most general supersymmetric invariant two-point function is
given as in (5.1) with the help of a kernel constructed with a linear combination of the invariant
projections Pi, i = c, a, T , +,−. An example is the standard kernel Pc +Pa −PT in (5.1) but it
turns out that this is not the most general one compatible with positivity. By computation it can
be proved that (in the massive case) the most general invariant and positive kernel is generated
by λcPc + λaPa + λP+ + λ̄P− − λT PT with λc, λa, λT being positive (or zero) and |λ2| < λcλa .
This result allows us to introduce by known formulae [18] in analogy to (8.2)–(8.4) a whole
family of (supersymmetric) quantum fields called generalized free fields. We will not discuss
them in detail here.

Let us remind the reader that from a historical point of view the two main achievements
of the axiomatic quantum field theory were the PCT and the spin and statistics theorems
[4, 18]. We end this paper by formulating the PCT result in the supersymmetric
framework. First besides the P,C, T transformations in quantum field theory (they do not
act the Grassmann variables; they act only the multiplet components) we introduce the �
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transformation by [14]

θα → iθ̄ ′
α̇, θ̄α̇ → iθ ′

α
(10.1)

θα → iθ̄ ′α̇, θ̄ α̇ → iθ ′α.

This is the PCT transformation of the spinor θ with components θα [4]. The supersymmetric
PCT theorem means the invariance of the theory to the transformation PCT supplemented
by � (it could be also called the �PCT theorem). The proof in our framework follows for
example from the general representation of the n-point functions in the scalar neutral theory
given in (9.13). Indeed by locality the spacetime coefficients of the Grassmann variable
products in the n-point functions (9.13) satisfy PCT invariance. On the other hand, taking into
account that θiσ

l θ̄j ∂l and θiθj + θ̄i θ̄j are invariant under � it follows that the supersymmetric
n-point functions altogether are �PCT invariant.
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